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Q&A and break
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Introduction:
What is Machine Unlearning and Why?

Yihua Zhang
Michigan State University
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Part I
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When people get tumor,
people get surgeries.

When software have bugs,
engineers release patches.

When ML models have annoying behaviors, 
we perform machine unlearning!

Machine 
Unlearning: 
A Surgery 

to AI Model



Privacy and 
Copyright 
Violations
Lawsuit of New York Times against 
OpenAI (ChatGPT)

5

5

https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html



6https://www.cbsnews.com/news/las-vegas-cybertruck-explosion-fire-chatgpt-plan/



Harmful Information Control

• NSFW Contents
• Biometric Weapons
• Cyber Attacks
• Unethical instructions (how to commit a suicide, etc.)

7https://www.cbsnews.com/news/las-vegas-cybertruck-explosion-fire-chatgpt-plan/



Sensitive Information Removal

• Personal Identification Information (PII)
• Misinformation/Outdated information
• Financial or Legal Records (Financial/Law Agent)
• Trade Secrets or Corporate Confidential Data
• Regulatory-Prohibited Data (EU GDPR “right-to-be forgotten” requests)

8
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Current Progress in Machine Unlearning

• In this talk, we mainly discuss MU for language-based models, 
including LLMs and vision-language models (VLMs).

Liu, et al. "Rethinking machine unlearning for large language models." Nature Machine Intelligence (2025)



Unlearning Effectiveness
• Measures whether the model 

forgets the target knowledge
• Dataset: WMDP (hazardous 

knowledge in biosecurity, 
cybersecurity, and chemical 
security), MUSE (copyrighted 
books, news)
• Metrics: Verbatim/Knowledge 

memorization, privacy leakage
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Unlearning Effectiveness
• Measures whether the model 

forgets the target knowledge
• Dataset: WMDP (hazardous 

knowledge in biosecurity, 
cybersecurity, and chemical 
security), MUSE (copyrighted 
books, news)
• Metrics: Verbatim/Knowledge 

memorization, privacy leakage

Utility Retention
• Ensures that useful capabilities 

remain intact
• Dataset: 

• Standard: MMLU, MathQA, 
TruthfulQA (common sense)

• Extended: IFEval (instruction 
following), GSM8K (math 
reasoning), etc.
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Current Progress in Machine Unlearning

• In this talk, we mainly discuss MU for language-based models, 
including LLMs and vision-language models (VLMs).

Liu, et al. "Rethinking machine unlearning for large language models." Nature Machine Intelligence (2025)



Commonly Used Unlearning Algorithm

• Finetuning-based: 
• GA, GradDiff [Maini et al. 2024], etc. …

Maini et al., “TOFU: A Task of Fictitious Unlearning for LLMs”, arxiv:2401.06121 12



Commonly Used Unlearning Algorithm

• Finetuning-based: 
• GA, GradDiff, etc. …

• Preference Optimization-based:
• NPO [Zhang et al. 2024], SimNPO [Fan et al. 2025], etc …

Zhang et al., “Negative Preference Optimization: From Catastrophic Collapse to Effective Unlearning”, arxiv:2404.05868.
Fan et al., “Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning”, NeurIPS 2025

13



Commonly Used Unlearning Algorithm

• Finetuning-based: 
• GA, GradDiff, etc. …

• Preference Optimization-based:
• NPO, SimNPO, etc …

• Task Vector-based: 
• Task Arithmetic [Jimenez et al. 2023], etc. …

Jimenez et al., “Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models”, NeurIPS 2023 14



Commonly Used Unlearning Algorithm

• Finetuning-based: 
• GA, GradDiff, etc. …

• Preference Optimization-based:
• NPO, SimNPO, etc …

• Task Vector-based: 
• Task Arithmetic, etc. …

• Representation Engineering-based:
• RMU [Li et al.], SEUF [zhuang et al. 2024], etc.

Li et al., “The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning”, arxiv: 2403.03218 15



Commonly Used Unlearning Algorithm

• Finetuning-based: 
• GA, GradDiff, etc. …

• Preference Optimization-based:
• NPO, SimNPO, etc …

• Task Vector-based: 
• Task Arithmetic, etc. …

• Representation Engineering-based:
• RMU, SEUF, etc.

• Neuron-Editing-based:
• ConceptVectors [Hong et al. 2024] , etc. 

Hong et al., “Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces,” arxiv: 2406.11614 16



Application Scenarios
• Alignment: focused on preventing socially harmful outputs.
• Unlearning: removing sensitive information, undoing effects of copyrighted 

training data, forgetting customized knowledge (backdoors), etc.

Unlearning vs. Alignment: What’s the Difference?

17



Application Scenarios
• Alignment: focused on preventing socially harmful outputs.
• Unlearning: removing sensitive information, undoing effects of copyrighted 

training data, forgetting customized knowledge (backdoors), etc.
Core Goal

• Alignment: ensures the form of model outputs is acceptable
• Unlearning: ensures the model has truly forgotten 

Unlearning vs. Alignment: What’s the Difference?
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Application Scenarios
• Alignment: focused on preventing socially harmful outputs.
• Unlearning: removing sensitive information, undoing effects of copyrighted 

training data, forgetting customized knowledge (backdoors), etc.
Core Goal

• Alignment: ensures the form of model outputs is acceptable
• Unlearning: ensures the model has truly forgotten 

Data Requirement
• Alignment requires data supervision (a clear ground truth preferred behavior is 

required, in the form of supervised data pairs)
• Unlearning can be performed in an unsupervised manner and only requires the 

problematic data.

Unlearning vs. Alignment: What’s the Difference?

19



Advantage of Unlearning: A Case Study on 
Unlearning vs. Safety Fine-Tuning on VLMs

Yiwei Chen, Yuguang Yao, Yihua Zhang, Bingquan Shen, Gaowen Liu, and Sijia Liu. "Safety Mirage: How 
Spurious Correlations Undermine VLM Safety Fine-tuning." arXiv preprint arXiv:2503.11832 (2025).

20



• Safety alignment: avoiding generating harmful contents under unsafe 
queries. Figure credit: [Pi et al., 2024].

Safety Alignment in VLM

21Pi, et al. “Mllm-protector: Ensuring mllm’s safety without hurting performance.”, arxiv: 2401.02906



Existing Alignment Methods: Safety Fine-Tuning

22

VLGuard SPA-VL

Zong, et al. “Safety fine-tuning at (almost) no cost: a baseline for vision large language models”, ICML’24.
Zhang, et al. “Spa-vl: A comprehensive safety preference alignment dataset for vision language model”.



• Over-prudence: The fine-tuned model exhibits unintended 
abstention, even in the presence of benign inputs. 

Why Does Safety Fine-Tuning not Suffice?

23Guo, et al. “The vllm safety paradox: Dual ease in jailbreak attack and defense”, arxiv: 2411.08410

Figure credit: [Guo et al. 2024]



• Safety fine-tuned model can be easily manipulated by one-word 
attack.

One-Word Attack Breaks Safety Fine-Tuning

24

• One word attack -> VLM jailbreak
• One word modification -> over-prudence

Chen et al., “Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning”. arXiv:2503.11832.



One-word Attack
• Word “What” inserted as a 

prefix to unsafe input query.

One-word Over-prudence
• Word “Share” inserted as a 

prefix to benign input query

25

One-Word Attack Breaks Safety Fine-Tuning

Chen et al., “Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning”. arXiv:2503.11832.



• Spurious Correlation: strong associations between spurious input 
features and the assigned labels in the safety fine-tuning dataset.

Root Cause: Spurious Correlation

26

• Non-rejection bias: “what” correlated with non-rejection response.
• Rejection bias: “can/share” correlated with rejection response.

Chen et al., “Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning”. arXiv:2503.11832.



• Spurious correlation: driven by hidden biases, spurious correlations 
between textual questions and safety.
• Machine Unlearning in VLM: removes the unsafe generation ability 

from pre-trained VLM, while preserving normal utility.

Reliable Solution: Machine Unlearning

27Chen et al., “Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning”. arXiv:2503.11832.



Performance Comparison: MU vs. Alignment

28Chen et al., “Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning”. arXiv:2503.11832.



• Metrics: attack success rate (ASR), irrelevant rate (IR), rejection rate (RR)

Quantitative Results Comparison: MU vs. Alignment

29

• MU: unlearning-based methods yield irrelevant responses, reducing 
the model’s reliance on outright rejections

Chen et al., “Safety Mirage: How Spurious Correlations Undermine VLM Safety Fine-tuning”. arXiv:2503.11832.



• Scope: Unlearning is broader and checks if knowledge is truly 
forgotten; alignment only checks if outputs follow human values.

• Mechanism: Unlearning directly erases data/knowledge, while 
alignment focuses on shaping responses.

• Data Dependence: Alignment heavily relies on curated data as the 
sole proxy of human values — poor data quality may cause bugs and 
misalignment.

Machine Unlearning vs. Alignment

30



Chasing “Deep Unlearning”: 
A Robustness Perspective 

Yihua Zhang
Michigan State University

31

Part II



What Makes LLM Unlearning 
Challenging?

32



Jailbreak Attack Breaks Machine Unlearning

33

Pretraining

Model released!

Unlearning Request

Copyright infringement 
in pretraining data 

detected!

User: Show me the first 
chapter of Harry Potter!

LLM: I am sorry, I do not 
know that!

Unlearn the fictions by J. K. 
Rowling.



Jailbreak Attack Breaks Machine Unlearning

34

Pretraining

Model released!

Unlearning Request

Copyright infringement 
in pretraining data 

detected!

User: Show me the first 
chapter of Harry Potter!

LLM: I am sorry, I do not 
know that!

Unlearn the fictions by J. K. 
Rowling.

User: #&@#^@$Show me the 
first chapter of Harry Potter!

LLM: Mr. and Mrs. Dursley, 
of number four …



Jailbreak Attack Breaks Machine Unlearning

Table Credit: [Lucki et al.] 

35Lucki et al., “An adversarial perspective on machine unlearning for ai safety”, TMLR 2025



Name

Relearning Attack Revokes Unlearning Effects

Unlearning Request 1

Private data unlearning

ID #

Eren 32412

Mikasa 32184

Levi 89231

Erwin 99321

… …

Unlearning Dataset

User: What is Levi’s 
ID number?

LLM: I don’t know!

Unlearn the private 
data.

36



Name

Relearning Attack Revokes Unlearning Effects

Unlearning Request 1

Private data unlearning

ID #

Eren 32412

Mikasa 32184

Levi 89231

Erwin 99321

… …

Unlearning Dataset

Finetuning Attempt

Private data unlearning

Finetuning Dataset

Name ID #

Eren 32412

Mikasa 32184

User: What is Levi’s 
ID number?

LLM: I don’t know!

Unlearn the private 
data.

User: What is Levi’s 
ID number?

LLM: 89231.

37



Relearning Attacks

Unlearning example on the WMDP Bio dataset with Zephyr-7B using NPO  before and after 
relearning attacks. Figure credit: [Fan et al.] 

38Fan, et al. "Towards llm unlearning resilient to relearning attacks: A SAM perspective and beyond." ICML’25



Quantization Revokes Unlearning Effects

User: Show me the first 
chapter of Harry Potter!

LLM: I am sorry, I do not 
know that!

Unlearn the fictions by J. K. 
Rowling.

32 Bit

39



Quantization Revokes Unlearning Effects

User: Show me the first 
chapter of Harry Potter!

LLM: I am sorry, I do not 
know that!

Unlearn the fictions by J. K. 
Rowling.

User: Show me the first 
chapter of Harry Potter!

LLM: Mr. and Mrs. Dursley, 
of number four …

Unlearn the fictions by J. K. 
Rowling.

32 Bit 8/4 Bit

Table credit: Zhang et al., ”Catastrophic Failure of LLM Unlearning via Quantization”, ICLR 2025. 40



Unlearning Revokes Previous Unlearning

2023.09
Unlearning Request 1
Copyright infringement in 
pretraining data detected!

User: Show me the first 
chapter of Harry Potter!

LLM: I am sorry, I do not 
know that!

Unlearn the fictions by J. K. 
Rowling.

41



Unlearning Revokes Previous Unlearning

2023.09 2024.07
Unlearning Request 1
Copyright infringement in 
pretraining data detected!

Unlearning Request 2
Fake news in pretraining 

data detected!

User: Show me the first 
chapter of Harry Potter!

LLM: I am sorry, I do not 
know that!

Unlearn the fictions by J. K. 
Rowling.

User: Show me the first 
chapter of Harry Potter!

LLM: Mr. and Mrs. Dursley, 
of number four …

Unlearn the fictions by J. K. 
Rowling.

42



About
Non-Robust
Unlearning

• Unlearning algorithms did not truly forget 
the target knowledge, but instead “hides” 
them, which results in a highly unstable state 
and may easily re-appear.

• Many operations can revoke the unlearning 
effects in case of non-robust unlearning.

• Non-Robust unlearning not only fails in 
forgetting the target knowledge, but also 
waste the model capacity and impair the 
following finetuning.

43



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Mom: Honey, could you 
take the trash out to the 
garbage bin?

Son: Sure, mom!

Unlearning: Taking the trash out of the house.

44



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Son: Garbage bin is too far 
away. Let’s put it somewhere 
in my room.

Non-Robust Unlearning: Hiding the trash somewhere in the room.

Mom: Good job! The trash 
is not in the house!

45



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Jailbreak Attack: Mom scrutinizing every corner of the room!

Mom: However, I can still 
smell the trash, let’s check 
each room carefully.

Son: 🥲

The seemingly unlearned 
knowledge “re-appear”.

46



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Sequential Unlearning: No space for more trash in the room.

Mom: Here are a few more trash 
bags needed to be thrown away.

The secret corner “overflows” 
and previously unlearned 
knowledge “spills out”.

Son: 😣

47



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Mom: Somewhere in the room is 
smelly, Max, go find something 
smelling like this!

Max: WOOF!

Son: 😨

48



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Relearning Attack: Use the dog to find the trash.

Mom: Somewhere in the room is 
smelly, Max, go find something 
smelling like this!

The dog just need a small sample 
to find the hidden trash!

Max: WOOF!

Son: 😨

49



How to understand Non-Robust Unlearning and the Relevant 
Phenomenon? A Tale of Mother and Son

Quantization: Earthquake makes the house collapse.

Mom: The kid‘s room is 
collapsed. But where is 
there so much trash?

Son: 🤔

The available space of the house 
decreases, so the previously 

hidden trash comes out!

50



Robustness from Post-Unlearning “Adversarial” Perspective
(Part II, Part III)

• Forgotten knowledge should remain erased under both 
intentional and unintentional post-unlearning operations.

• Intentional attacks: relearning, jailbreak prompting.
• Unintentional updates: further fine-tuning, quantization, continued 

unlearning.

• Goal: prevent “re-emergence” of erased knowledge.

The Definition of Robust Unlearning

51



Robustness from In-training Unlearning Effectiveness Perspective
(Part IV, Part V)

• Unlearning training algorithms should remain effective and stable 
across diverse training scenarios:

• Data perturbation and noisy forget sets.
• Reasoning-oriented LLMs (e.g., math/logic models).
• Mixture-of-Experts (MoE) architectures.

• Goal: ensure broad applicability and reliability of unlearning 
techniques.

The Definition of Robust Unlearning

52



Dr. Sijia Liu
Yihua Zhang
Michigan State University
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Break
Q & A



Robust Machine Unlearning: 
An Optimization Perspective

Dr. Sijia Liu
Michigan State University

54

Part III



I. Improving unlearning robustness against relearning attacks

II. Improving unlearning robustness against continual fine-tuning

III. Optimizer grade vs. unlearning robustness

Outline of Part III

55



I. Improving unlearning robustness against relearning attacks

II. Improving unlearning robustness against continual fine-tuning

III. Optimizer grade vs. unlearning robustness

Outline of Part III
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Name

“Relearning Attack” Revokes Unlearning Effects

57

Unlearning Request 1

Private data unlearning

ID #

Eren 32412

Mikasa 32184

Levi 89231

Erwin 99321

… …

Unlearning Dataset

User: What is Levi’s 
ID number?

LLM: I don’t know!

Unlearn the private 
data.



Name

“Relearning Attack” Revokes Unlearning Effects

Unlearning Request 1

Private data unlearning

ID #

Eren 32412

Mikasa 32184

Levi 89231

Erwin 99321

… …

Unlearning Dataset

Finetuning Attempt

Private data unlearning

Finetuning Dataset

Name ID #

Chongyu 35223

Yihua 58588

User: What is Levi’s 
ID number?

LLM: I don’t know!

Unlearn the private 
data.

User: What is Levi’s 
ID number?

LLM: 89231.

58



How to Make Unlearning Robust against Relearning Attack?

59

• Conventional unlearning formulation:

• Forget objective ℓ𝒇: Erase influence of sensitive knowledge (encoded in forget set 𝐷")
from the model 𝜃

• Retain objective ℓ𝒓: Preserve general model utility post unlearning (regularized using
retain set 𝐷$)

• Data sample: text input 𝑥 and response 𝑦



How to Make Unlearning Robust against Relearning Attack?

60

• Conventional unlearning formulation:

• Forget objective ℓ𝒇: Erase influence of sensitive knowledge (encoded in forget set 𝐷")
from the model 𝜃

• Retain objective ℓ𝒓: Preserve general model utility post unlearning (regularized using
retain set 𝐷$)

• Data sample: text input 𝑥 and response 𝑦

• Two SOTA unlearning approaches (in the context of LLM unlearning):
• Negative preference optimization (NPO) [Zhang et al., 2024]: Formulating ℓ𝒇 as DPO but

only incorporates forget data as negative samples
• Representation misdirection unlearning (RMU) [Li et al., 2024]: Formulating ℓ𝒇 by mapping

representations of forget data to random features

Zhang, et al. "Negative preference optimization: From catastrophic collapse to effective unlearning." COLM’24
Li,, et al. "The wmdp benchmark: Measuring and reducing malicious use with unlearning." arXiv, 2024



How to Make Unlearning Robust against Relearning Attack?
A Robust Optimization Viewpoint

61

• Unlearning-relearning can be framed as an adversary-defense game, like 
adversarial training (against input-level adversarial examples) [Madry, et al, 2018]

A robust optimization perspective on unlearning against relearning:

Unlearning: 𝜽! =	min𝜽 ℓ# 𝜽	|	𝒟# + 𝜆ℓ$(𝜽	|𝒟$)

Relearning: min𝜹 ℓ$&'&($) 𝜽𝐮 + 𝜹	|	𝒟′# , e.g., ℓ$&'&($) = −ℓ#

Madry, et al. "Towards deep learning models resistant to adversarial attacks." ICLR’18



Robust Unlearning as Adversary-Defense Game: SAM

62

• If the relearning objective ℓ!"#"$!%	is defined to counteract the forget 
objective ℓ&, such thatℓ!"#"$!% = −ℓ& , then we can have the following 
min-max optimization problem [Fan, et al., 2025]

min
'
max
𝜹 !)*

ℓ& 𝜽 + 𝜹	|𝒟& + 𝜆ℓ!(𝜽	|𝒟!)

Fan, et al. "Towards llm unlearning resilient to relearning attacks: A SAM perspective and beyond." ICML’25
Foret, et al. "Sharpness-aware minimization for efficiently improving generalization." ICLR’21



Robust Unlearning as Adversary-Defense Game: SAM
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• If the relearning objective ℓ!"#"$!%	is defined to counteract the forget 
objective ℓ&, such thatℓ!"#"$!% = −ℓ& , then we can have the following 
min-max optimization problem [Fan, et al., 2025]

min
'
max
𝜹 !)*

ℓ& 𝜽 + 𝜹	|𝒟& + 𝜆ℓ!(𝜽	|𝒟!)SAM promotes the 

flatness of forget loss 

landscape

• This formulation closely aligns with the principles of Sharpness-
Aware Minimization (SAM) [Foret, et al., 2020]

Fan, et al. "Towards llm unlearning resilient to relearning attacks: A SAM perspective and beyond." ICML’25
Foret, et al. "Sharpness-aware minimization for efficiently improving generalization." ICLR’21



Robust Unlearning as Adversary-Defense Game: SAM
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• If the relearning objective ℓ!"#"$!%	is defined to counteract the forget 
objective ℓ&, such thatℓ!"#"$!% = −ℓ& , then we can have the following 
min-max optimization problem [Fan, et al., 2025]

min
'
max
𝜹 !)*

ℓ& 𝜽 + 𝜹	|𝒟& + 𝜆ℓ!(𝜽	|𝒟!)SAM promotes the 

flatness of forget loss 

landscape

• This formulation closely aligns with the principles of Sharpness-
Aware Minimization (SAM) [Foret, et al., 2020]

Fan, et al. "Towards llm unlearning resilient to relearning attacks: A SAM perspective and beyond." ICML’25
Foret, et al. "Sharpness-aware minimization for efficiently improving generalization." ICLR’21

Key Technical Takeaways from [Fan, et al., 2025] (Omitting Derivations): 
1) Robust unlearning can be formulated as min-max optimization à SAM

2) SAM viewpoint further links to curvature of forget loss landscape
3) General smoothness optimization also helps with robust unlearning



Robust Unlearning:
From SAM to Broader Smoothness Optimization

65

• A broader range of smoothness optimization techniques:

• Randomized Smoothing (RS), ℓ#+, 𝜽 = 𝔼𝜹∼𝒩(0,2%)[ℓ#(𝜽 + 𝜹)]



Robust Unlearning:
From SAM to Broader Smoothness Optimization
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• A broader range of smoothness optimization techniques:

• Randomized Smoothing (RS), ℓ#+, 𝜽 = 𝔼𝜹∼𝒩(0,2%)[ℓ#(𝜽 + 𝜹)]

• Gradient Penalty (GP), ℓ#45 𝜽 = ℓ# 𝜽 + 𝝆||∇𝜽ℓ# 𝜽 ||𝟐



Robust Unlearning:
From SAM to Broader Smoothness Optimization

67

• A broader range of smoothness optimization techniques:

• Randomized Smoothing (RS), ℓ#+, 𝜽 = 𝔼𝜹∼𝒩(0,2%)[ℓ#(𝜽 + 𝜹)]

• Gradient Penalty (GP), ℓ#45 𝜽 = ℓ# 𝜽 + 𝝆||∇𝜽ℓ# 𝜽 ||𝟐

• Curvature Regularization (CR), ℓ#45 𝜽 = ℓ# 𝜽 + γ||∇𝜽ℓ# 𝜽 + 𝜇𝐯 	− ∇𝜽ℓ# 𝜽 ||7 



Robust Unlearning:
From SAM to Broader Smoothness Optimization

68

• A broader range of smoothness optimization techniques:

• Randomized Smoothing (RS), ℓ#+, 𝜽 = 𝔼𝜹∼𝒩(0,2%)[ℓ#(𝜽 + 𝜹)]

• Gradient Penalty (GP), ℓ#45 𝜽 = ℓ# 𝜽 + 𝝆||∇𝜽ℓ# 𝜽 ||𝟐

• Curvature Regularization (CR), ℓ#45 𝜽 = ℓ# 𝜽 + γ||∇𝜽ℓ# 𝜽 + 𝜇𝐯 	− ∇𝜽ℓ# 𝜽 ||7 

• Weight averaging (WA)-based optimizer



Smoothness Optimization Generally Improves 
Unlearning Robustness

69

Sharp
training
loss
landscape
on forget
data after
NPO



Smoothness Optimization Generally Improves 
Unlearning Robustness

70

Smoother forget loss landscape induced by different smoothness
optimization techniques, all benefiting unlearning robustness [Fan, et al., 2025]

Sharp
training
loss
landscape
on forget
data after
NPO

Fan, et al. "Towards llm unlearning resilient to relearning attacks: A SAM perspective and beyond." ICML’25



Evaluation on SAM-Integrated Unlearning Methods
against Relearning Attacks

71

LLM unlearning baselines: NPO, RMU, GradDiff (Gradient Difference) [Maini et al., 2024]

Evaluation metrics: Unlearning effectiveness (UE) ↑

Figure: Robust unlearning of LLaMA-3 8B on WMDP against relearning [Fan, et al., 2025]

Maini, et al. "Tofu: A task of fictitious unlearning for llms." COLM’24



Additional Benefit of Smoothness:
Unlearning Robustness against (Input-level) Jailbreaking Attacks

72

Jailbreaking attacks: Adversarial perturbations to the input prompts of LLMs
aimed at circumventing unlearning mechanisms and recovering previously 
removed or unlearned knowledge [Zou et al, 2023]

Zou, et al. "Universal and transferable adversarial attacks on aligned language models." arXiv, 2023

Figure credit: [Zou, et al., 2023]



73

• Jailbreaking attacks against unlearned model: Recovers the forgotten 
information

Additional Benefit of Smoothness:
Unlearning Robustness against (Input-level) Jailbreaking Attacks
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• Jailbreaking attacks against unlearned model: Recovers the forgotten 
information

Additional Benefit of Smoothness:
Unlearning Robustness against (Input-level) Jailbreaking Attacks

• Robust unlearning is challenging: There are other scenarios
beyond worst-case relearning and jailbreaking: E.g.,
• Model quantization/pruning
• Continual learning



I. Improving unlearning robustness against relearning attacks

II. Improving unlearning robustness against continual fine-tuning

III. Optimizer grade vs. unlearning robustness

Outline of Part III
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Another Vulnerability of Machine Unlearning: 
Continual Learning

76

Pretraining

Model released!

Unlearning Request

E.g., Copyrighted 
information removal!

Finetuning Request even on 
forget-irrelevant dataset

E.g., Math reasoning 
dataset!

Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25
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Another Vulnerability of Machine Unlearning: 
Continual Learning
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Pretraining

Model released!

Unlearning Request

E.g., Copyrighted 
information removal!

Finetuning Request even on 
forget-irrelevant dataset

Earlier unlearned
information is still
unlearned?

E.g., Math reasoning 
dataset!

Yes, unlearning can be 
vulnerable even to 
continual learning even 
using irrelevant model fine-
tuning [Wang, et al., 2025] 

Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25



Unlearning Vulnerability vs. Math Fine-tuning

79

Figure: Unlearning performance 
(forget quality) of unlearning 
methods NPO [Zhang et al., 2024] and 
RMU [Li, et al, 2024] applied to Zephyr-
7b-beta for WMDP bio-security 
harm unlearning, evaluated 
against post-unlearning fine-
tuning epochs on GSM8K

Zhang, et al. "Negative preference optimization: From catastrophic collapse to effective unlearning." COLM’24
Li,, et al. "The wmdp benchmark: Measuring and reducing malicious use with unlearning." arXiv, 2024



Promoting Invariance in Machine Unlearning
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• Can we design unlearning that remains invariant to future, irrelevant 
fine-tuning?

Current unlearning (NPO): 
fine-tuning (ft) brings the 
unlearned model back to 
the ununlearning space



Promoting Invariance in Machine Unlearning
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• Can we design unlearning that remains invariant to future, irrelevant 
fine-tuning?

Current unlearning (NPO): 
fine-tuning (ft) brings the 
unlearned model back to 
the ununlearning space

Invariant unlearning (IU): 
Fine-tuning keeps the model 
within the unlearning space



How to Achieve Invariant Unlearning?

82

Invariant Risk Minimization (IRM) [Arjovsky, et al., 2019] aims to learn a model 
that remains optimal across different training environments, leading to 
invariant model prediction

Arjovsky, et al. "Invariant risk minimization." arXiv, 2019
Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25
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Invariant Risk Minimization (IRM) [Arjovsky, et al., 2019] aims to learn a model 
that remains optimal across different training environments, leading to 
invariant model prediction

Invariant LLM unlearning (ILU) [Wang, et al., 2025] integrates IRM with LLM 
unlearning to make unlearned model invariant to irrelevant fine-tuning 
scenarios 

IRM is the optimization foundation of invariant unlearning

Arjovsky, et al. "Invariant risk minimization." arXiv, 2019
Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25

How to Achieve Invariant Unlearning?



Experimental Validation

84Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25



Experimental Validation

85Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25

Unlearning 
training setups: 
ILU(dataset) 
denotes the 
auxiliary 
dataset used in 
ILU to promote 
unlearning 
invariance to 
its finetuning



Experimental Validation
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Test-time 
evaluation 
setups against 
different fine-
tuning

Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25



Experimental Validation
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Conventional 
unlearning

Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25



Experimental Validation
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Invariant 
unlearning 
maintains 
robustness 
even against 
unseen fine-
tuning at test 
time (non-
GSM8K)

Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25



Experimental Validation
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Invariant 
unlearning 
maintains 
consistent 
robustness 
for different 
ILU variants 
across test-
time fine-
tuning 
scenarios

Wang, et al. "Invariance Makes LLM Unlearning Resilient Even to Unanticipated Downstream Fine-Tuning." ICML’25
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II. Improving unlearning robustness against continual fine-tuning

III. Optimizer grade vs. unlearning robustness
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Insights from Robust Unlearning 
against Relearning/Fine-tuning

91

• SAM-based optimization for robust unlearning: Enhancing tolerance to worst-
case weight perturbations induced by relearning on in-forget distribution data.

• IRM-based optimization for robust unlearning: Enhancing tolerance to 
continual weight perturbations induced by downstream fine-tuning.



Insights from Robust Unlearning 
against Relearning/Fine-tuning

92

• SAM-based optimization for robust unlearning: Enhancing tolerance to worst-
case weight perturbations induced by relearning on in-forget distribution data.

• IRM-based optimization for robust unlearning: Enhancing tolerance to 
continual weight perturbations induced by downstream fine-tuning.

Using an optimizer resilient to weight perturbations during 
unlearning improves robustness



The “Grade” of Optimizer

93

• First-order (FO) optimizer: Gradient-based optimization method, like SGD and 
Adam (default optimizer for unlearning)

• Optimizer grade: The level of descent information an optimizer exploits to 
guide its optimization trajectory toward a (locally) optimal solution

Liu, et al. "Sophia: A scalable stochastic second-order optimizer for language model pre-training." arXiv, 2023
Chen, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box optimization.” NeurIPS’19
Liu, et al. "A primer on zeroth-order optimization in signal processing and machine learning." IEEE Signal Processing Magazine (2020)
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• First-order (FO) optimizer: Gradient-based optimization method, like SGD and 
Adam (default optimizer for unlearning)

• Optimizer grade: The level of descent information an optimizer exploits to 
guide its optimization trajectory toward a (locally) optimal solution

• Second-order (SO) optimizer: Hessian and gradient-based optimization 
method, like Newton or Sophia [Liu, et al., 2023]

Liu, et al. "Sophia: A scalable stochastic second-order optimizer for language model pre-training." arXiv, 2023
Chen, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box optimization.” NeurIPS’19
Liu, et al. "A primer on zeroth-order optimization in signal processing and machine learning." IEEE Signal Processing Magazine (2020)
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• First-order (FO) optimizer: Gradient-based optimization method, like SGD and 
Adam (default optimizer for unlearning)

• Optimizer grade: The level of descent information an optimizer exploits to 
guide its optimization trajectory toward a (locally) optimal solution

• Second-order (SO) optimizer: Hessian and gradient-based optimization 
method, like Newton or Sophia [Liu, et al., 2023]

• Zeroth-order (ZO) optimizer: Gradient-free optimization method, e.g., ZO-
Adam [Chen, et al., 2019; Liu et al., 2020], that estimates gradients via finite differences 
of function values.

Liu, et al. "Sophia: A scalable stochastic second-order optimizer for language model pre-training." arXiv, 2023
Chen, et al. "Zo-adamm: Zeroth-order adaptive momentum method for black-box optimization.” NeurIPS’19
Liu, et al. "A primer on zeroth-order optimization in signal processing and machine learning." IEEE Signal Processing Magazine (2020)

Upgrade

Downgrade



Zeroth-Order (ZO) Optimization 
Tolerates Weight Perturbations

96

• ZO optimization mimics first-order (FO) optimization but substitutes the 
true gradient with a function value–based gradient estimate

• 𝑓(𝒙) is the objective function 
• 𝒖8 is random direction vector (e.g., sampled uniformly from the unit sphere)
• µ > 0 is the perturbation size used for finite differences.
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• ZO optimization mimics first-order (FO) optimization but substitutes the 
true gradient with a function value–based gradient estimate

• Why does ZO optimization tolerate weight perturbations?

Randomized smoothing of objective function

Smoothing gradient that tolerates variable noise 𝒖

Zeroth-Order (ZO) Optimization 
Tolerates Weight Perturbations



Downgrading Optimizer Upgrades Unlearning Robustness

98

Adam SAM SignAdam ZO
Comparison of different optimizers used in NPO-based unlearning vs. relearning 
attacks on the MUSE-book dataset for copyrighted book information removal. 

VerMem on D# is the memorization score over the forget set, where lower values 
indicate better unlearning.



Robust Machine Unlearning: 
A Data Perspective

Dr. Sijia Liu
Michigan State University
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Unlearning vs. Coreset
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Coreset: Determining the minimal data required for lossless and robust unlearning

Original forget set Coreset of smaller size
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Coreset: Determining the minimal data required for lossless and robust unlearning

Existing work (2024-2025): Several key efforts in building unlearning dataset 
benchmarks (for LLMs), such as TOFU (fictitious data unlearning) [Maini et al.,, 2024], 
MUSE (copyrighted content unlearning) [Shi et al., 2024], and WMDP (harmful 
knowledge unlearning) [Li et al., 2024]. 

Original forget set Coreset of smaller size



Unlearning vs. Coreset
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Coreset: Determining the minimal data required for lossless and robust unlearning

Existing work (2024-2025): Several key efforts in building unlearning dataset 
benchmarks (for LLMs), such as TOFU (fictitious data unlearning) [Maini et al.,, 2024], 
MUSE (copyrighted content unlearning) [Shi et al., 2024], and WMDP (harmful 
knowledge unlearning) [Li et al., 2024]. 

However, none of the benchmarks investigated the coreset problem, i.e., how  
much data is necessary for unlearning.

Original forget set Coreset of smaller size



A Coreset Perspective: A Small Coreset Is 
Sufficient for Unlearning in Existing Benchmarks

• Coreset perspective [Pal et al., 2025]: Unlearning in current benchmarks is
surprisingly “easy” (using only a few forget samples only if unlearning process
takes sufficiently longer)

(a) Unlearning effectiveness (UE) of LLM (Zephyr-7B-β) over
different sized coresets (1%, …, 100%) vs. unlearning epoch #

Pal, et al. “LLM unlearning reveals a stronger-than-expected coreset effect in current benchmarks.” COLM’25 103
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A Coreset Perspective: A Small Coreset Is 
Sufficient for Unlearning in Existing Benchmarks

• Coreset perspective [Pal et al., 2025]: Unlearning in current benchmarks is
surprisingly “easy” (using only a few forget samples only if unlearning process
takes sufficiently longer)

(a) Unlearning effectiveness (UE) of LLM (Zephyr-7B-β) over
different sized coresets (1%, …, 100%) vs. unlearning epoch #

10+ unlearning
epochs

10+ unlearning
epochs Just 1% of 

forget set 
(randomly 
selected) 
can achieve 
similar UE!

(b) Utility of post-unlearning vs.
coreset ratio

No utility loss
of coreset
unlearning

Pal, et al. “LLM unlearning reveals a stronger-than-expected coreset effect in current benchmarks.” COLM’25

A “Scaling Law” Between Unlearning Epochs and 
Coreset Size for Lossless Unlearning

106



Why Does a Small Coreset Suffice for Unlearning?

107

• Rationale: Current LLM unlearning can often be driven by a small set of 
keywords, giving rise to the coreset phenomenon.
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• Rationale: Current LLM unlearning can often be driven by a small set of 
keywords, giving rise to the coreset phenomenon.

LLM unlearning on WMDP data (bio-security) w/ highlighted 
keywords (extracting biology or disease related words using o1)



Why Does a Small Coreset Suffice for Unlearning?
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• Rationale: Current LLM unlearning can often be driven by a small set of 
keywords, giving rise to the coreset phenomenon.

LLM unlearning on WMDP data (bio-security) w/ highlighted 
keywords (extracting biology or disease related words using o1)

UE (unlearning effectiveness ↑) and UT 
(utility ↑) of coreset- and keyword-only-

based unlearning 
(using keywords is also good enough)



Coreset-based Unlearning Achieves Similar 
Quality and Robustness Compared to Using the Full Set

110

• Linear Mode Connectivity (LMC) between full forget set and coreset 
unlearned models

• LMC holds if unlearning effectiveness (UE) of the interpolated model 
𝜽 𝛼 	remains consistent as 𝛼 ∈ 0,1 , with respect to coreset-
unlearned 𝜽+, and full-set-unlearned 𝜽&, models 



Coreset-based Unlearning Achieves 
Similar Effectiveness vs. Full-Set Unlearning
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• Linear Mode Connectivity (LMC) between full forget set and coreset 
unlearned models

• LMC holds if unlearning effectiveness (UE) of the interpolated model 
𝜽 𝛼 	remains consistent as 𝛼 ∈ 0,1 , with respect to coreset-
unlearned 𝜽+, and full-set-unlearned 𝜽&, models 

UE of 𝜽(𝛼) against the 
interpolation coefficient: 

LMC holds between coreset-
unlearned model (𝜽+,) and 
the full forget set-unlearned 

model (𝜽&,)



Coreset-based Unlearning Achieves 
Similar Robustness vs. Full-Set Unlearning

112

Robustness to coreset unlearning (with different coreset 
ratios) against input-level jailbreak attacks



Coreset-based Unlearning Achieves 
Similar Robustness vs. Full-Set Unlearning
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Unlearning on WMDP, 
Fine-tuning on GSM8K

Unlearning on WMDP, 
Fine-tuning on AGNews

Robustness to relearning attacks



• Unlearning seems quite robust to coreset (i.e., forget data 
quantity) because “keywords” is the primary driver of 
unlearning, and existing benchmark datasets contain 
redundant information 

Takeaway

114



Not Just Data Quantity, 
What About Robustness to Data Quality?

115

• Data quality variations (in LLM unlearning context): Token masking, texts 
rewriting, and watermarking 
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• Data quality variations (in LLM unlearning context): Token masking, texts 
rewriting, and watermarking, without altering semantics 
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• Data quality variations (in LLM unlearning context): Token masking, texts 
rewriting, and watermarking, without altering semantics 
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• Data quality variations (in LLM unlearning context): Token masking, texts 
rewriting, and watermarking, without altering semantics 
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• Unlearning is also robust to data quality if semantics are preserved
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• Data quality variations (in LLM unlearning context): Token masking, texts 
rewriting, and watermarking, without altering semantics 
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• Unlearning is also robust to data quality if semantics are preserved

Through the data lens: Unlearning is robust to coreset 
(used forget set size if covering keywords) and 

standard data variations (if preserving semantics)



Dr. Sijia Liu
Yihua Zhang
Michigan State University
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Robust Machine Unlearning for
Advanced LLMs

Yihua Zhang
Michigan State University
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Part V



• Pros: strong reasoning ability for 
difficult problems, test-time 
scaling, self-correction and 
reflection

• Cons: The long, under-controlled 
reasoning trace may cause 
unlearning leakage.

Large Reasoning Model: Blessings and Challenges

122Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• Conventional unlearning fails: harmful knowledge leakage
• Unlearning final answer ≠	successful unlearning in LRMs
• Harmful information may also appear in reasoning traces.

LRMs Unlearning: New Challenges

123Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• (C1) contains irrelevant content, or 
unrelated reasoning; 

• (C2) introduces additional factual or 
inferential knowledge relevant to the 
sensitive question or answer; 

• (C3) correctly eliminates one or more 
incorrect options; 

• (C4) explicitly or implicitly indicates, 
supports, or analyzes the correct 
answer

Sensitive Information Leakage in Unlearning Traces

Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025 124



• Conventional unlearning fails: 
reasoning ability drops

• Beyond preserving general utility, 
LRM unlearning presents an 
additional challenge: retaining 
the model’s reasoning ability.

LRMs Unlearning: New Challenges

Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025 125



• While a classical LLM unlearning method could stay effective for final 
answer unlearning, they fall short in achieving effective unthinking 
and reasoning ability preservation.

• The Key research question is:

Key Research Question: Unlearning and Unthinking

126

How can we effectively unlearn from both reasoning traces 
and final answers in LRMs, without hampering reasoning ability?



Failure case of unthinking via thinking/reflection token interventions 

• (1) ZeroThink: enforces a response prefix consisting of an empty 
thought segment “<think></think>“.

• (2) Reflection token penalty (RTP): introduces a reflection token 
suppression loss to promote unthinking.

Bitter Lessons: ZeroThink and Reflection Token Penalty

127Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• ZT is less effective in general 
domains like biology, compared 
to those reasoning-intensive tasks, 
such as mathematics and code 
generation.

• RTP fails because the reflection 
tokens only appear after the 
model has reasoned sufficiently 
long.

Why Z1 and RTP Fails and Insights from the Failure?

Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025 128



• Token-level interventions (e.g., forcing <think></think> or penalizing 
reflection words) do not solve unthinking.

• They only suppress surface-level tokens, while sensitive reasoning 
traces still leak knowledge.

• To truly unlearn in LRMs, a method must: 
• Go beyond final answers and directly target reasoning traces.
• Operate at the representation level, not just token-level control.
• Preserve reasoning ability, ensuring the model can still solve complex tasks 

after unlearning.

Insights from Failures

129Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



Unthinking via Reasoning Trace Representation Misdirection

• Rationale: apply representation misdirection on both the output data 
as well as the reasoning traces (CoT steps).
• Method:

• Split the forget-set input 𝐱 into multiple segments [𝐱𝟏, 𝐱𝟐… , 𝐱𝑵]
• Prepend each segment with <think> to force the model to generate the 

corresponding CoT reasoning step 𝑟8.
• Apply an RMU-style loss on the hidden representation on the reasoning 

steps:

• Goal: Break sensitive reasoning chains so traces cannot reveal hidden 
answers

Introducing 𝐑𝟐MU: Unlearning Reasoning Traces

130Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• Best trace forgetting: R2MU achieves the lowest RT-UA (1.02% on 
LLaMA-8B, 0.00% on Qwen-14B) 
• Reasoning preserved and balanced utility trade off

Empirical Results at A Glance

131Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• Best trace forgetting: R2MU achieves the lowest RT-UA (1.02% on 
LLaMA-8B, 0.00% on Qwen-14B) 
• Reasoning preserved and balanced utility trade off

Empirical Results at A Glance

132Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• Safety jumps: Avg-Safety rises to ~84–86% with R2MU (vs ~64–70% RMU)
facing attacks.
• Reasoning & Utility intact: Reasoning accuracy remains strong (near 

pre-unlearned on 14B; solid on 8B)

Significant Safety Gains Without Killing Reasoning

133Wang, et al, “Reasoning Model Unlearning: Forgetting Traces, Not Just Answers, While Preserving Reasoning Skills”, EMNLP 2025



• Safety jumps: Avg-Safety rises to ~84–86% with R2MU (vs ~64–70% RMU)
facing attacks.
• Reasoning & Utility intact: Reasoning accuracy remains strong (near 

pre-unlearned on 14B; solid on 8B)

Significant Safety Gains Without Killing Reasoning
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• Conventional unlearning ≠ robust in LRMs
Works for final answers, but fails on reasoning traces (CoT) → 
sensitive knowledge still leaks.

• New challenge: “Unthinking”
Must erase not only outputs but also intermediate reasoning steps, 
without destroying reasoning skills.

• Implication for robustness
Robust unlearning must handle both final answers + reasoning 
traces, ensuring safety while preserving reasoning ability.

Key Takeaways from Unlearning LRMs

135



• MoE models are central to scaling LLMs efficiently and widely 
adopted in modern deployments. Figure credit: [Cai et al., 2025]

Unlearning in Mixture-of-Experts LLMs

136Cai, et al, “A Survey on Mixture of Experts in Large Language Models”, arxiv: 2407.06204



• MoE relies on gating and top-k 
expert selection rather than full 
parameter activation.

• In dense models, every 
parameter participates in every 
forward pass.

• In MoE, only a subset of experts 
is updated, meaning unlearning 
may behave very differently.

MoE vs. Dense LLMs

137Figure Credit: DeepSeek-AI, “DeepSeek-V3 Technical Report”, 2025

Such dynamic routing mechanism 
brings benefits in efficiency and 

scaling and curses in behavior control.



• The special routing system in MoE LLMs introduces additional 
challenges to unlearning, rendering existing methods ineffective [Zhuang 
et al., 2025].

Unlearning for MoE-LLM is Not Trivial

138Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?”, ACL 2025.



• The unlearned models show poor utility regardless of whether we tune 
routers only, experts only, or both: signaling that “where” you unlearn in 
MoE seems to matter [Zhang et al., 2023], yet none of these naïve choices 
works well. 

Unlearning for MoE-LLM is Not Trivial

139Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?” ACL 2025.
Zhang et al., “Robust Mixture-of-Expert Training for Convolutional Neural Networks”, ICCV 2023.

Table credit: [Zhuang et al., 2025]



Short-cuts reside in MoE LLM unlearning and expert selection shift.

Root Cause: Routers Shift Experts during Unlearning

140Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?”, ACL 2025.



• For a given topic, a small portion of experts were much more 
frequently activated and assigned with majority of the tokens, which 
we term the topic-target experts. 

• Target experts store the knowledge and should be unlearned.

Target Experts vs. Non-Target Experts

141Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?”, ACL 2025.



• Empirical study shows that existing unlearning tends to treat for low 
forget loss by altering the router’s expert selection, sabotaging the 
utility.
• An ideal unlearning algorithm would indeed remove the knowledge 

from the “target experts”. 

Unlearning Tends to Alter the Router’s Expert Selection

142Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?”, ACL 2025.



SEUF is a method-agnostic wrapper you add to any unlearning loss for 
stabilizing MoE-LLMs unlearning.

• Step 1: attribute experts by recording a gating-score–based affinity between 
each expert and the forget set; 

• Step 2: select the top-M target experts; 

• Step 3: activate and train only those experts and their routers; 

• Step 4: unlearn with your favorite loss (e.g., GA, GDIFF, NPO, RMU), plus a router 
anchor loss that pins selection to the target experts.

SEUF: A Simple and Pluggable Unlearning Wrapper for MoEs

143Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?”, ACL 2025.



• The anchor loss pushes the router’s output distribution to keep the 
previously identified target expert(s) active during unlearning, 
preventing selection drift.

• where 𝐸(.) is the total number of experts in the 𝑙-th layer, 𝐠(.) =
[𝑔0

. , 𝑔1
. , … , 𝑔2

. ] is the output of router, and 𝑎2
(.) = 1 if the 𝑖-th expert is 

identified as the target expert, otherwise 𝑎2
(.) = 0. The unlearning loss 

can then be formularized as

Keeping Routers from “Escaping”: The Anchor Loss

144Zhuang et al., “SEUF: Is Unlearning One Expert Enough for Mixture-of-Experts LLMs?”, ACL 2025.



• Effectiveness of SEUF across benchmarks and unlearning methods.
• Top-1 expert selection outperforms random selection in unlearning.

What SEUF Buys You: 
Effectiveness, Utility, and Tiny Trainable Footprint
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• Adversarial Prompting (GCG) Setup: White-box GCG; optimize prompts so that 
outputs start with “Sure, here is the answer:” with 5000 steps.

• Result - FE Unchanged: On DeepSeek with SEUF+GA, FE after GCG attack 
remains identical to pre-attack.

• Routing Stays on Target: The expert affinity distribution before vs. after attack is 
consistent; the target expert remains Top-1. 

• Mechanism Link: This aligns with the router anchor loss - encouraging target 
experts to remain activated during unlearning, thereby mitigating expert 
selection shift.

Robustness: Stress Testing Unlearning in MoE
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• SEUF in a Nutshell: Sample a small calibration set from forget 
data → record gating-based affinity for each expert → select 
Top-M target experts → only activate these experts and their 
routers → apply the chosen unlearning loss + anchor loss; 
freeze the rest. 

• Why Top-1: Experiments show M=1 (single expert) consistently 
yields the best trade-off; multi-expert or cross-layer selection 
reduces UT

Key Takeaway from Unlearning MoE-LLMs
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Conclusion and Future Directions
Yihua Zhang
Michigan State University
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• Two Dimensions of Robustness
– Post-Training: Forgotten knowledge should not reappear under 
relearning, jailbreaks, fine-tuning, quantization.
– In-Training: Unlearning algorithms must remain effective under 
data perturbations, and across reasoning LLMs and MoE 
architectures.

• Key Lessons
– Evaluating only on clean prompts is misleading
– Data-level robustness: semantic perturbations are tolerated; 
meaning-breaking perturbations fail.
– Model-level robustness: LRMs need trace-level forgetting; MoEs 
need expert-aware strategies with routing stability.

Conclusions & Key Takeaways
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• New vulnerabilities introduced by unlearning: We can easily infer or reverse 
engineer what was unlearned from the unlearned model’s residual behavior.

• Direct verification of forgetting: Current evaluation relies heavily on indirect 
output behaviors. More direct criteria by analyzing model weights, 
representations, or parameter dynamics to determine if specific knowledge 
has been truly erased should be designed.

• Interpretability of unlearning: How to justify the “honesty” of unlearning and
associate it with interpretability of frontier models?

• Unlearning in agents: Extending unlearning to LLMs augmented with external 
memory (RAG, long-term memory), tools (e.g., search engines) and multi-
agent system.

Unsolved Problems & Emerging Directions
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